APPLICATION NOTE

Gas Chromatography

Authors:

Kira. Yang Yong. Xu

PerkinElmer, Inc. Shanghai, PRC

Determination of Volatile Organic Compounds (VOCs) in Soil by HS-GC/FID

Introduction

Volatile organic compounds (VOCs) are a series of compounds with high vapor pressure and boiling points from 50 to 250 degrees centigrade.

These characteristics lead to the tendency for large numbers of molecules to evaporate, or volatilize, from their solid state into the air. VOCs are present in the environment from a number of sources, both anthropogenic and naturally occurring. In soil, VOCs are mainly derived from discharged industrial and domestic sewage, oil spills, and chemical solvent leakages. VOCs in atmospheric particulates can also enter the soil through dry and wet deposition. Monitoring of VOC contamination in soils by both qualitative and quantitative analyses is important to ensure that the potential negative health impacts of VOC exposure are mitigated.

US EPA Method 5021 is a general-purpose method for the preparation of soil samples using a headspace procedure for the determination of VOCs by gas chromatography/mass spectrometry (GC/MS), as described in Method 8260. The China Environmental Protection standard HJ 741-2015 has also been established for determination of VOCs in soil and sediment by HS-GC/FID, and is applicable to thirty seven VOCs.

In this study, thirty seven VOCs are investigated in a soil matrix, using a PerkinElmer Clarus[®] GC/FID and TurboMatrix[™] HS-40. Detailed instrument method parameters are presented with precision, linearity and reporting limit results.

Experimental

Instrumentation

A PerkinElmer Clarus GC/FID and TurboMatrix HS-40 were utilized to perform these experiments, with detailed conditions presented in Table 1. A PerkinElmer Elite-624 column (60 m x 0.25 mm x 1.4 μ m) was used to separate the eluting compounds. The headspace transfer line was installed into the GC split injector port. A patented zero dilution liner was used in the programmable split/splitless capillary injector (PSSI). A pulse sample introduction technique was utilized to provide high sensitivity and repeatability.

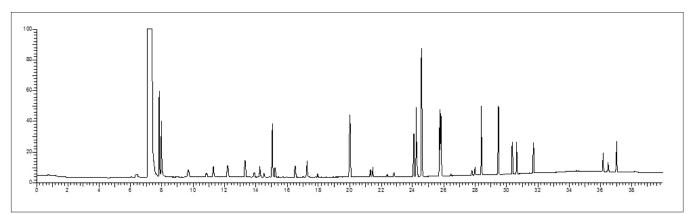
Sample Preparation

10 µg/mL of calibration standard (37 VOCs mixture) was obtained from an independent laboratory. Analytical grade NaCl was purchased from Sinopharm Chemical Reagent Co. Ltd., and the pure water utilized in the experiment was produced by Mini-Q.

A standard sample was prepared by adding a volume of the calibration standard, 2.0 g of quartz sand and 10.0 mL of saturated sodium chloride solution to the 22 mL glass headspace vials with PTFE-faced septa. The vials were sealed immediately with the PTFE side of the septum facing toward the sample.

Method precision was investigated by spiking six vials with 0.50 μ g of standard sample in quartz sand. Reporting limits were determined by analyzing the standard at an amount of 0.10 μ g.

Calibration


The calibration curve was prepared by adding 10, 20, 50, 100 and 200 μ L of calibration standard to the headspace vials. The amount of VOCs in each vial was 0.10, 0.20, 0.50, 1.00 and 2.00 μ g, respectively.

Results and Discussion

The chromatogram of the calibration standard is shown in Figure 1. The calibration curves were plotted as the peak area versus the amount of the analyte. The coefficient of determination (r^2) was over 0.994, showing the reliability of the analysis in the range of 0.10 - 2.00 µg (Table 2). Table 2 summarizes the results for retention time (RT), linearity, repeatability and signal-to-noise ratio

(S/N) at the reporting limit. Area repeatability, measured by the relative standard deviation (RSD), was found to be 2.77 - 6.75%.

Table 1. Analytical parameters.					
HS Parameters					
Needle Temperature	85 °C				
Transfer Line Temperature	110 °C				
Oven Temperature	100 °C				
Thermostatting Time	20 min				
Pressurization Time	1 min				
Injection Time	0.1 min				
Column Pressure	38 psi				
Vial Pressure	45 psi				
Operation Mode	Constant				
GC Parameters					
GC Column	Elite-624 (60 m x 0.25 mm x 1.4 um)				
Headspace Connector	Split Mode Connection				
Inlet Temp	220 °C				
GC Injector	PSSI with a zero dilution liner				
Carrier Gas	Nitrogen				
Carrier Gas Flow Program 1	2.0 ml/min for 1.0 min. (Rate 999)				
Carrier Gas Flow Program 2	1.0 min for remainder of run (hold 999) 1.0 ml/min				
Split Flow	1 ml/min				
Initial Oven Temp	40 °C				
Oven Hold	5 min				
Ramp	8 °C/min				
2nd Oven Temp	100 °C				
Oven Hold	5 min				
Ramp	6 °C/min				
3rd Oven Temp	200 °C				
Oven Hold	10 min				
FID Temperature	220 °C				
H ²	40 mL/min				
Air	400 mL/min				
Attenuation	-6				

Table 2. Results for retention time, repeatability and reporting limit.

Compound Name	CAS No	RT	Repeatability	Reporting Limit	Linearity		
		(min)	(RSD %)	(S/N at 0.1 µg)	Slope	Intercept	r ²
Chloroethylene	75-01-4	3.81	6.75	3.36	9501	-538	0.9983
1,1-Dichloroethylene	75-35-4	6.35	4.70	7.37	17804	-356	0.9997
Dichloromethane	75-09-2	7.51	4.30	5.18	7291	417	0.9995
E-1,2-Dichloroethylene	156-60-5	7.96	5.51	7.46	18765	-410	0.9992
1,1-Dichloroethane	75-34-3	8.92	5.50	7.2	17703	-273	0.9989
Z-1,2-Dichloroethylene	156-59-2	10.09	5.30	8.67	20622	6538	0.9993
Chloroform	67-66-3	10.7	6.21	7.08	6424	-138	0.9988
1,1,1-Trichlorethane	71-55-6	10.98	4.07	15.55	15105	-47	0.9984
Carbon tetrachloride	56-23-5	11.22	4.08	5.79	5485	-99	0.9982
Benzene	71-43-2	11.71	4.45	71.72	70291	-1660	0.9990
1,2-Dichloroethane	107-06-2	11.9	5.06	13.93	12889	-378	0.9991
Trichloroethylene	79-01-6	12.97	6.51	16.76	15686	-286	0.9998
1,2-Dichloropropane	78-87-5	13.57	5.05	6.68	23831	-733	0.9989
Bromodichloromethane	75-27-4	14.16	4.40	1.80	4501	73	0.9996
Toluene	108-88-3	16.02	4.97	29.77	71819	995	0.9991
1,1,2-Trichloroethane	79-00-5	17.48	2.77	8.22	8648	-180	0.9989
Tetrachloroethylene	127-18-4	17.58	4.50	10.03	12114	-173	0.9986
Dibromochloromethane	124-48-1	18.68	4.27	8.30*	3057	-158	0.9995**
1,2-Dibromoethane	106-93-4	19.11	3.18	1.92	5331	-195	0.9985
Chlorobenzene	108-90-7	20.61	3.30	39.32	45523	-665	0.9991
Ethylbenzene	100-41-4	20.86	4.90	61.09	83158	-1645	0.9986
1,1,1,2-Tetrachloroethane	630-20-6	20.86	4.90	61.09	83158	-1645	0.9986
m, p-Xylene	108-38-3/ 106-42-3	21.26	5.78	115.1	71236	-2876	0.9985
o-Xylene	95-47-6	22.60	5.18	57.95	70050	-1686	0.9986
Styrene	100-42-5	22.71	2.73	58.24	64212	-708	0.9989
Bromoform	75-25-2	23.40	5.04	5.64*	1822	-9	0.9994**
1,1,2,2-Tetrachlorethane	79-34-5	25.07	4.39	5.43	5279	-17	0.9942
1,2,3-Trichloropropane	96-18-4	25.24	5.26	7.70	8586	-349	0.9975
1,3,5-Trimethylbenzene	108-67-8	25.76	5.51	43.21	70260	-2081	0.9988
1,2,4-Trimethylbenzene	95-63-6	26.99	4.76	33.73	68152	-1784	0.9991
1,3-Dichlorobenzene	541-73-1	27.96	2.69	29.97	31762	-420	0.9991
1,4-Dichlorobenzene	106-46-7	28.27	3.78	30.84	31268	-174	0.9989
1,2-Dichlorobenzene	95-50-1	29.47	4.32	15.74	31347	-477	0.9991
1,2,4-Trichlorobenzene	120-82-1	34.44	5.35	13.79	21533	-284	0.9992
Hexachlorobutadiene	87-68-3	34.81	4.74	7.46	12185	-160	0.9994
Naphthalene	91-20-3	35.28	3.33	21.7	37201	-1193	0.9987

 $\,$ * Reporting limit was determined by analyzing the standard at an amount of 0.50 $\mu g.$

** The calibration curves were plotted in the range of 0.20 to 2.00 $\mu g.$

Summary

In this study, the analysis of thirty-seven VOCs in soil is performed efficiently and effectively by the PerkinElmer TurboMatrix HS 40 - Clarus GC/FID system. It is a simple, flexible, cost effective, accurate and precise technique for the detection of VOCs in soil, enabling accurate detecting of environmental samples.

PerkinElmer, Inc.

940 Winter Street Waltham, MA 02451 USA P: (800) 762-4000 or (+1) 203-925-4602 www.perkinelmer.com

For a complete listing of our global offices, visit www.perkinelmer.com/ContactUs

Copyright ©2019, PerkinElmer, Inc. All rights reserved. PerkinElmer® is a registered trademark of PerkinElmer, Inc. All other trademarks are the property of their respective owners.

PKI